Gene Regulation by CcpA and Catabolite Repression Explored by RNA-Seq in Streptococcus mutans

نویسندگان

  • Lin Zeng
  • Sang Chul Choi
  • Charles G. Danko
  • Adam Siepel
  • Michael J. Stanhope
  • Robert A. Burne
چکیده

A bacterial transcriptome of the primary etiological agent of human dental caries, Streptococcus mutans, is described here using deep RNA sequencing. Differential expression profiles of the transcriptome in the context of carbohydrate source, and of the presence or absence of the catabolite control protein CcpA, revealed good agreement with previously-published DNA microarrays. In addition, RNA-seq considerably expanded the repertoire of DNA sequences that showed statistically-significant changes in expression as a function of the presence of CcpA and growth carbohydrate. Novel mRNAs and small RNAs were identified, some of which were differentially expressed in conditions tested in this study, suggesting that the function of the S. mutans CcpA protein and the influence of carbohydrate sources has a more substantial impact on gene regulation than previously appreciated. Likewise, the data reveal that the mechanisms underlying prioritization of carbohydrate utilization are more diverse than what is currently understood. Collectively, this study demonstrates the validity of RNA-seq as a potentially more-powerful alternative to DNA microarrays in studying gene regulation in S. mutans because of the capacity of this approach to yield a more precise landscape of transcriptomic changes in response to specific mutations and growth conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans.

CcpA globally regulates transcription in response to carbohydrate availability in many gram-positive bacteria, but its role in Streptococcus mutans remains enigmatic. Using the fructan hydrolase (fruA) gene of S. mutans as a model, we demonstrated that CcpA plays a direct role in carbon catabolite repression (CCR). Subsequently, the expression of 170 genes was shown to be differently expressed ...

متن کامل

Transcriptional regulation of the cellobiose operon of Streptococcus mutans.

The ability of Streptococcus mutans to catabolize cellobiose, a beta-linked glucoside generated during the hydrolysis of cellulose, is shown to be regulated by a transcriptional regulator, CelR, which is encoded by an operon with a phospho-beta-glucosidase (CelA) and a cellobiose-specific sugar phosphotransferase system (PTS) permease (EII(Cel)). The roles of CelR, EII(Cel) components, and cert...

متن کامل

Sucrose- and Fructose-Specific Effects on the Transcriptome of Streptococcus mutans, as Determined by RNA Sequencing.

Recent genome-scale studies have begun to establish the scope and magnitude of the impacts of carbohydrate source and availability on the regulation of gene expression in bacteria. The effects of sugars on gene expression are particularly profound in a group of lactic acid bacteria that rely almost entirely on their saccharolytic activities for energy production and growth. For Streptococcus mu...

متن کامل

Analysis of cis- and trans-acting factors involved in regulation of the Streptococcus mutans fructanase gene (fruA).

There are two primary levels of control of the expression of the fructanase gene (fruA) of Streptococcus mutans: induction by levan, inulin, or sucrose and repression in the presence of glucose and other readily metabolized sugars. The goals of this study were to assess the functionality of putative cis-acting regulatory elements and to begin to identify the trans-acting factors involved in ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013